Tuesday, March 19, 2019

Types of Signal Converters Commonly used in Industrial Control


Signal converters change a signal from one form to another. In most cases, we have standard inputs and output ranges.
Types of signal converters

Most signal converters have two adjustments-zero and range.
Examples of Signal converters
Nozzle-flapper and differential pressure cells
The nozzle-flapper system is widely used in D.P. Cells. An example is shown below, that converts differential pressure (e.g. from a differential Pressure flow meter into a standard pneumatic signal). This is widely used in the control of air operated pipeline valves.
Flapper Nozzle System

The bellows respond to the differential pressure and moves the lever. This moves the flapper towards or a way from the nozzle. The air supply passes through a restrictor and leaks out of the nozzle. The output pressure hence depends on how close the flapper is to the end of the nozzle. The range of the instrument is adjusted by moving the pivot and zero position is adjusted by moving the relative position of the flapper and nozzle. This system is used in a variety of forms. Instead of bellows, a bourdon tube might be used and this is operated by an expansion type temperature sensor to produce a temperature-pneumatic signal converter.
Current/Pressure conversion 
The figures below show typical units for converting 4-20 mA into 0.2-1 bar or 3-15 psi. They contain adjustments for range and zero. They are widely used for converting the standard pneumatic and electric signals back and forth. They can also be adjusted to work with non standard inputs to convert them into a standard form.
Current to Pressure Converter (C/P)
Current to Pressure Converter

Pressure to Current Converter (P/C)
Pressure to Current Converter

Electric D.P. Cells
They provide the same functions as the pneumatic versions but they are given an output of 4-20 mA using electrical pressure transducers. They are typically used with D.P. Flow meters.
Differential Pressure Transmitter
Differential Pressure Transmitter

Analogue -Digital Converters
Analogue to digital conversion is a process of turning an analogue voltage or current into a digital pattern which can read by a computer and processed, this is done by analogue -digital converters.  Lets look at the Binary Numbers, a number may be represented in digital form by simply setting a pattern of voltages on a line high or low. It is normal to use 4, 8, 16 or 32 lines. An 8 bit binary pattern is shown in the below figure:
Binary Numbers
The total pattern is called a word and the one above is an 8 bit word. The pattern may be stored in an 8 bit register. A register is a temporary store where the word may be manipulated. The Bit zero is called the least significant bit (LSB) and the bit with highest value is called the most significant bit (MSB). Each bit has a value of zero when off (LOW) or the value shown when on (HIGH). The maximum value for an 8 bit word is 255.
Digital to Analogue Converters
These are devices for converting a binary number into an analogue voltage. The change in the binary value from zero to a maximum corresponds with a change in the analogue value from 0 to maximum.
One of the manufacturers of signal converters is Omega.
Don't miss out on key updates, join our newsletter list here.

Sunday, March 10, 2019

The Inputs and Outputs of Process Measurement Instruments Commonly used in Control Systems

Basically when you are doing the troubleshooting of any instrumentation system you assume that every instrument has at least one input and at least one output and that the output(s) should accurately correspond to the input (s). In normal circumstances, if the instrument’s output is not corresponding to its input according to the instrument’s design function, then there could be something wrong with the instrument. Lets consider the inputs of the following examples of  instruments that are commonly used in process control systems:
  • Differential Pressure transmitter
  • Temperature Transmitter
  • Controller

Process measurement instruments


Controller
Each of the above instruments takes in (input) data and generates the (output) data.  In an instrumentation loop, the output of one instrument feeds into the input of the next. Such information is passed from one instrument to another.
By intercepting the data communicated between components of an instrument system, we are able to locate and isolate faults. For us to able to properly understand the intercepted data, we must understand the inputs and outputs of the respective instruments and the basic functions of those instruments. From the above diagrams, we  are able to highlight the kind of inputs and outputs for each of the instruments indicated.
To be able to check the right correspondence between the instrument inputs and outputs, we must therefore use appropriate test equipment to intercept the signals into and out of these instruments e. g. in case of analogue instruments using 4-20 mA signals we can use the electrical meters capable of measuring the current and voltage.
So what are some of the key considerations when using milliameters to measure loop current?
For you to measure the loop current, you have to break the circuit to connect the milliameter, in series with the current, and which means the current will fall to 0 mA until the meter is connected. Interrupting the current means interrupting the flow of information that is conveyed by that current, be it a process measurement or a command signal to a final control element. This can have adverse effects on the control system unless certain preparations are made before hand. The preparations can be in form of:
  • Informing the personal in charge that signal will be interrupted - state the number of times you intend to do the interruption.
  • For case, where the signal is coming from a process transmitter to a controller, the controller should be placed in manual mode, so that it will not cause an upset in the process. 
  • If the current drives process shutdown alarms, these should be disabled on temporarily basis, so that nothing shuts down upon the interruption of the signal.
  • All process alarms should be temporarily disables so that they do not cause panic.
  • If the current signal to be interrupted is a command signal from a controller to a final control element, the final control element either needs to be manually overridden so as to hold a fixed setting while the signal varies or it needs to be bypassed completely by some other devices (s)
Don't miss out on key updates, join our newsletter list here.